Understanding Nanoconfinement Effects on Electrochemical Redox Reactions with Reduced Graphite Oxide as a Model Electrode (2025)

    Functional Nanostructured Materials (including low-D carbon)

    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2025, XXXX, XXX, XXX-XXX

    Click to copy citationCitation copied!

    https://pubs.acs.org/doi/10.1021/acsami.5c00939

    Published April 25, 2025

    Publication History

    • Received

    • Accepted

    • Revised

    • Published

      online

    research-article

    © 2025 American Chemical Society

    Request reuse permissions

    Abstract

    Click to copy section linkSection link copied!

    Understanding Nanoconfinement Effects on Electrochemical Redox Reactions with Reduced Graphite Oxide as a Model Electrode (3)

    Micropores smaller than 1 nm in carbon materials have garnered significant attention for their ability to induce confinement effects. Anomalous improvements in the specific capacitance and reversibility of electrochemical redox reactions have been reported. However, due to limitations in synthetic methods, carbon materials with identical physical properties but varying pore sizes have not yet been successfully prepared. In this study, we investigate the relationship between the pore size of carbon materials and the reversibility of the redox reaction of quinone-based molecules using reduced graphite oxide (rGO) as a model electrode material. Cross-linked graphite oxide (GO) and rGO exhibit minimal changes in surface properties while allowing precise tuning of the interlayer distance at the ångström level. The ΔEp values of the redox reaction of quinone-based molecules on cross-linked rGO decrease with decreasing interlayer distance. These findings strongly indicate that the reversibility of the redox reaction can be enhanced by reducing the pore sizes of carbon materials. This study clearly demonstrates the origin of the relationship between the pore size and reversibility of the redox reactions of quinone-based molecules.

    ACS Publications

    © 2025 American Chemical Society

    Subjects

    what are subjects

    Article subjects are automatically applied from the ACS Subject Taxonomy and describe the scientific concepts and themes of the article.

    • Layered materials
    • Materials
    • Molecules
    • Monomers
    • Redox reactions

    Keywords

    what are keywords

    Article keywords are supplied by the authors and highlight key terms and topics of the paper.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Recommended

    Log in to Access

    You may have access to this article with your ACS ID if you have previously purchased it or have ACS member benefits. Log in below.

    • Purchase access

      Purchase this article for 48 hours $48.00 Add to cart

      Purchase this article for 48 hours Checkout

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    Download PDF

    Get e-Alerts

    Get e-Alerts

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2025, XXXX, XXX, XXX-XXX

    Click to copy citationCitation copied!

    Published April 25, 2025

    Publication History

    • Received

    • Accepted

    • Revised

    • Published

      online

    © 2025 American Chemical Society

    Request reuse permissions

    Article Views

    -

    Altmetric

    -

    Citations

    -

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

    Recommended Articles

    Understanding Nanoconfinement Effects on Electrochemical Redox Reactions with Reduced Graphite Oxide as a Model Electrode (2025)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Prof. An Powlowski

    Last Updated:

    Views: 6582

    Rating: 4.3 / 5 (44 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Prof. An Powlowski

    Birthday: 1992-09-29

    Address: Apt. 994 8891 Orval Hill, Brittnyburgh, AZ 41023-0398

    Phone: +26417467956738

    Job: District Marketing Strategist

    Hobby: Embroidery, Bodybuilding, Motor sports, Amateur radio, Wood carving, Whittling, Air sports

    Introduction: My name is Prof. An Powlowski, I am a charming, helpful, attractive, good, graceful, thoughtful, vast person who loves writing and wants to share my knowledge and understanding with you.